Monday, August 13, 2018

Social Biology: Questions For Research after Sutherland WJ et al. (2013) [Clara B. Jones]



Social Biology: Questions for research based upon Sutherland WJ et al. (2013) Identification of 100 fundamental ecological questions. J Ecology 101, 58-67. This list is not intended as a substitute for the original questions nor does it represent an exhaustive treatment of the ways that the original list can be interpolated, interpreted, or used by Social Biologists and Behavioral Ecologists. The following list interpolates questions primarily related to individual and population levels of analysis, with some questions, additionally, pertaining to Community and Ecosystem levels. However, researchers are encouraged to interpolate other questions in the original list, e.g., those devoted to Disease Ecology. As well, important methodological questions relevant to Social Biology and Behavioral Ecology are presented in the original paper. Overall, the fundamental “decision rule” is to interpret and interpolate questions as they may pertain to Social Biology as per all levels and features of group-living taxa. Clearly, questions might be interpolated relative to "Behavior" per se for broad treatment by Behavioral Ecologists.  Submitted by Clara B. Jones: @cbjones1943 [Twitter]

  • What are the evolutionary consequences of group-living populations becoming less connected through fragmentation?
  • How local is adaptation in group-living populations?
  • For group-living taxa, what are the ecological causes and consequences of epigenetic variation?
  • For group-living taxa, what are the relative contributions of different levels of selection (gene, individual, group) to life-history evolution and the resulting population dynamics?
  • What selective forces cause sex differences in life-history and what are their consequences for population dynamics of group-living taxa?
  • How do the strength and form of density-dependence influence feedbacks between population dynamics and life-history evolution of group-living taxa?
  • How does phenotypic plasticity influence evolutionary trajectories of social traits?
  • How variable are social traits across taxa?
  • What are the genetic and physiological bases of life-history tradeoffs in group-living taxa?
  • What are the evolutionary and ecological mechanisms governing range margins of group-living populations?
  • How can we upscale detailed processes at the level of individuals into patterns at the population scale in group-living taxa?
  • What are the heritability/genetic bases of dispersal and movement behavior[s] in group-living taxa?
  • How do group-living organisms make movement decisions in relation to dispersal, migration, foraging, or mate search?
  • For group-living taxa, do different demographic rates vary predictably over different spatial scales, and how do they then combine to influence spatio-temporal population dynamics?
  • For group-living taxa, how does demographic and spatial structure modify the effects of environmental stochasticity on population dynamics?
  • For group-living taxa, how do environmental stochasticity and environmental change interact with density-dependence to generate population dynamics and distributions?
  • For group-living taxa, to what degree do trans-generational effects on life histories, such as maternal effects, impact on population dynamics?
  • For group-living taxa, how does covariance among life-history traits affect their contributions to population dynamics?
  • What is the relative importance of direct (consumption, competition) vs. indirect (induced behavioral change) interactions in determining the effect of one group-living population upon another?
  • For group-living taxa, how important is individual variation to population, community, and ecosystem dynamics?
  • For group-living taxa, what demographic traits [genetic, individual, group, population] determine the resilience of natural populations to disturbance and perturbation [“stress”]?
  • How well can community properties and responses to environmental change be predicted from the distribution of social traits?
  • Thinking of group-living taxa, how do social traits influence ecological network structure?
  • How many group-living taxa can coexist in a given area?
  • Thinking of group-living taxa, how do resource pulses affect resource use and interactions between individuals and groups?
  • How important are group-living taxa in the functioning of ecological communities?
  • Thinking of group-living taxa, which taxa are most sensitive to to changes in community composition?
  • What are the relative contributions of [different levels of] group-living taxa to biodiversity and ecosystem functioning?
  • Thinking of group-living taxa, how does nutrient input and output affect productivity in ecosystems?
  • Which, if any, group-living taxa are functionally redundant in the context of stochastic or directional environmental changes?
  • What unexploited theories used by other disciplines could inform Social Biology and Behavioral Ecology?