Genesis:
the deep origin of societies.
Edward
O. Wilson
2019
Liveright
Pub. Co. (W.W. Norton & Co.)
153
pp
$15.88
Reviewed
by Clara B. Jones, Ph.D. (2019)
"The key to the sociobiology of mammals is milk." EO Wilson (1975)
"The key to the sociobiology of mammals is milk." EO Wilson (1975)
Social
evolution is an important topic of investigation by behavioral
ecologists and evolutionary biologists. The two categories of
sociality, cooperation and altruism (Hamilton 1964), have arisen
infrequently across vertebrate taxa because, in propitious
environmental regimes, group-level coordination and control is
usually derailed by “cheaters” who fail to comply with group
norms. As Wilson pointed out in 1971, groups of cooperators and
altruists characterize the most “successful” (i.e., widely
distributed) extant terrestrial taxa—social insects and humans. In
his new book, Genesis
[sic],
the entomologist, E.O. Wilson, winner of the Crafoord Prize in 1990 and America's premier social biologist*, assesses the
emergence of eusociality, the highest social “grade” (Wilson
1971).
Perhaps the primary contribution of this brief book is that Wilson classifies humans as eusocial, a system characterized by overlap of generations, cooperative brood-care, and non-reproductive "helpers." If Wilson is correct, humans would be classified, "primitively" eusocial (Wilson, 1971) or Totipotent Eusocial [TE; see "General Mammalian Patterns" blogpost, this blog, #28, 9/19/19], since most human "helpers" (except post-menopausal females or other sterile persons) are expected to be "totipotent"—"helpers" capable of independent reproduction, able to reverse their non-reproductive status [TE]. Members of permanently sterile “castes,” are labeled, “advanced” eusocial (Wilson, 1971), and Wilson's treatments in this book suggest to me that he might be inclined to label permanently non-reproductive human groups as “caste”-like, associations that should be investigated, as well, for the possible presence of "temporal division-of-labor" ("age polyethism": see Wilson, 1971)..
Perhaps the primary contribution of this brief book is that Wilson classifies humans as eusocial, a system characterized by overlap of generations, cooperative brood-care, and non-reproductive "helpers." If Wilson is correct, humans would be classified, "primitively" eusocial (Wilson, 1971) or Totipotent Eusocial [TE; see "General Mammalian Patterns" blogpost, this blog, #28, 9/19/19], since most human "helpers" (except post-menopausal females or other sterile persons) are expected to be "totipotent"—"helpers" capable of independent reproduction, able to reverse their non-reproductive status [TE]. Members of permanently sterile “castes,” are labeled, “advanced” eusocial (Wilson, 1971), and Wilson's treatments in this book suggest to me that he might be inclined to label permanently non-reproductive human groups as “caste”-like, associations that should be investigated, as well, for the possible presence of "temporal division-of-labor" ("age polyethism": see Wilson, 1971)..
The
first five chapters of Genesis
include limited explications of some topics (e.g., “multi-level”
selection, “phenotypic plasticity”). Wilson clearly explains that
the conceptual frameworks of Genesis
are Maynard Smith & Szathmáry's
(1995) classic treatment of “major transitions of evolution,” as
well as, “multi-level” and “group selection,” terms used
interchangeably. In
Chapter 6, Wilson appears to be primarily interested in proffering a
defense for Charles Darwin's explanation for the evolution of sterile
castes—an argument based on group selection which Wilson defines as
follows: "...within groups, selfish individuals win against
altruists, but groups of altruists beat groups of selfish
individuals" [attributed to David Sloan Wilson]. Among impediments to "proofs" of "group selection," defenders need to show how "cheaters" are controlled within groups, demonstrations that will require empirical studies.
Here and throughout the book, Wilson fails to incorporate the ecological literature showing, for example, that intragroup competition is generally stronger than intergroup competition or that behavioral ecologists have, since the early 1980s, advanced general criteria for the evolution of cooperative groups (e.g., Emlen 1982) and of eusociality (e.g., Crespi 1994; also see, Choe & Crespi 1997, Crespi et al. 2004 [see, especially, p 66 & pp 73-74], Bourke & Franks 1995, Bourke 2011); West-Eberhard 1975 on p 169, col. 3, par. 2 in Queller & Strassmann 1998 pp 169-170). More specifically, Wilson fails to cite other researchers who have advanced the idea that humans are eusocial (e.g., Foster & Ratnieks 2005, Jones 2011, Crespi 2014).
Nonetheless, combined with related studies (e.g., Emlen 1982, Emlen 1984, Hrdy 2011), there seems to be an expanding literature justifying systematic and quantitative investigation of eusociality in humans, in particular, and in vertebrates, broadly, including, standardization of terminology, experiments, and modeling (e.g., “agent-based” modeling). For an early, published paper that might generate ideas for these future projects, Lotka (1928) is suggested.
Here and throughout the book, Wilson fails to incorporate the ecological literature showing, for example, that intragroup competition is generally stronger than intergroup competition or that behavioral ecologists have, since the early 1980s, advanced general criteria for the evolution of cooperative groups (e.g., Emlen 1982) and of eusociality (e.g., Crespi 1994; also see, Choe & Crespi 1997, Crespi et al. 2004 [see, especially, p 66 & pp 73-74], Bourke & Franks 1995, Bourke 2011); West-Eberhard 1975 on p 169, col. 3, par. 2 in Queller & Strassmann 1998 pp 169-170). More specifically, Wilson fails to cite other researchers who have advanced the idea that humans are eusocial (e.g., Foster & Ratnieks 2005, Jones 2011, Crespi 2014).
Nonetheless, combined with related studies (e.g., Emlen 1982, Emlen 1984, Hrdy 2011), there seems to be an expanding literature justifying systematic and quantitative investigation of eusociality in humans, in particular, and in vertebrates, broadly, including, standardization of terminology, experiments, and modeling (e.g., “agent-based” modeling). For an early, published paper that might generate ideas for these future projects, Lotka (1928) is suggested.
The final chapter (7), titled, “The
human story,” reviews “transitions” to eusociality across apes,
from chimpanzees (Pan troglodytes), as well as, bonobos (P.
paniscus) continuing to Australopithecus and the Homo
line. Unlike other chapters, this one emphasizes the importance of
ecological factors (habitat) for the evolution of social mechanisms
among hominids and their ancestors, and Wilson endorses the “social
brain hypothesis” as well as the importance of fire for the “rapid
evolution” of large brains and the facilitation of group-life,
respectively—as well as, their consequent adaptations.
Interestingly, in this chapter (p 114), the author compares human
eusociality to other social mammals, in particular, African wild
dogs, demonstrating that he is prepared to classify “other mammal
species,” eusocial, in addition to the social mole rats (see Jones 2014, pp 48-52)****. For another interesting example, see Dwarf Mongoose.
Wilson does not dismiss “kin
selection;” but, he holds that “multi-level” or “group”
selection is the primary driver of the route to eusociality, behind
which kin effects may follow [he may be right; see this lecture, "Ecology Of Societies," by Simon Levin of Princeton:
https://www.youtube.com/watch?v=rQUsApf3RHs ].
Most social biologists are certain to be surprised to read Wilson's claims that "Hamilton's Rule" suffers "fatal weaknesses" and is no longer "useful (see Bourke 2011, Bourke & Franks 1995)." Wilson does not support these flippant statements with mainstream literature about which there is wide consensus in favor of Hamilton's Rule, and nowhere in his text does he assess assumptions underlying considerations of differential benefits to recipients of social behavior (cooperation or altruism) or differential costs to "donors," terms subsumed in Hamilton's Rule (see, for example, Bourke 2011, Marshall 2015). Related to this, Wilson all but completely avoids optimality [cost-benefit] thinking, and social biologists will, I think, find his explication of group selection obfuscating when applied to genetics, including the assertion that population geneticists have shown the verity of group selection.
Nonetheless, researchers, including, evolutionary psychologists, human biologists, and anthropologists, will derive many testable hypotheses from Wilson's claims, among the more provocative of them, the statement that division of labor by human professional categories is evidence of eusociality and group selection (that they are "caste-like)." I am led to wonder if some human guilds might be characterized by high r (coefficient of relationship), a possibility that would be easy to test. Likewise, guilds, and other formal human groups (e.g., fraternities and sororities, political groups, and the like), should be investigated for evidence of "temporal division-of-labor" ('age polyethism": see Wilson, 1971).
https://www.youtube.com/watch?v=rQUsApf3RHs ].
Most social biologists are certain to be surprised to read Wilson's claims that "Hamilton's Rule" suffers "fatal weaknesses" and is no longer "useful (see Bourke 2011, Bourke & Franks 1995)." Wilson does not support these flippant statements with mainstream literature about which there is wide consensus in favor of Hamilton's Rule, and nowhere in his text does he assess assumptions underlying considerations of differential benefits to recipients of social behavior (cooperation or altruism) or differential costs to "donors," terms subsumed in Hamilton's Rule (see, for example, Bourke 2011, Marshall 2015). Related to this, Wilson all but completely avoids optimality [cost-benefit] thinking, and social biologists will, I think, find his explication of group selection obfuscating when applied to genetics, including the assertion that population geneticists have shown the verity of group selection.
Nonetheless, researchers, including, evolutionary psychologists, human biologists, and anthropologists, will derive many testable hypotheses from Wilson's claims, among the more provocative of them, the statement that division of labor by human professional categories is evidence of eusociality and group selection (that they are "caste-like)." I am led to wonder if some human guilds might be characterized by high r (coefficient of relationship), a possibility that would be easy to test. Likewise, guilds, and other formal human groups (e.g., fraternities and sororities, political groups, and the like), should be investigated for evidence of "temporal division-of-labor" ('age polyethism": see Wilson, 1971).
In service to economy, organization,
and clarity, Genesis
might have been more wisely presented as a "tight"
technical paper rather than a manifesto in book form, though Wilson
deserves to be applauded for advancing bold ideas, for insisting that
human social behavior be subjected to the same analyses that we apply
to non-human animals, and that, ultimately, evolutionary explanations
will need to be "gene-centered," a long-standing hallmark
of Wilson's approach (e.g., Wilson 1975) and that of the heralded
evolutionary biologist, Robert Trivers (see, e.g., Trivers 1985 and the remarkable Trivers & Hare, 1976**; also see citations by Bernie Crespi). I
recommend this creative and controversial text to specialists,
students, and the general audience. It will raise many questions,
stimulate thought, and, hopefully, generate conversations*** and
research** about variations in human socio-sexual units, as well as,
the origins and evolution, the causes and consequences, of group life
across all vertebrates.
References
Bourke
AFG (2011) Principles
of social evolution.
Oxford University Press, Oxford.
----, Franks NR (1995) Social evolution in ants. Princeton [NJ] University Press.
----, Franks NR (1995) Social evolution in ants. Princeton [NJ] University Press.
Choe
JC, Crespi BJ (1997) The
evolution of social behavior in insects and arachnids.
Cambridge University Press, London.
Crespi
BJ (1994) Three conditions for the evolution of eusociality: are they
sufficient? Insectes
Sociaux
41(4): 395-400.
Crespi
BJ (2014) The insectan apes. Human
Nature
25(1): 6-27.
Crespi BJ, Morris DC, Mound LA (2004) Evolution of ecological and behavioural diversity: Australian Acacia thrips as model organisms. Australian Biological Resources Study, Canberra.
Crespi BJ, Morris DC, Mound LA (2004) Evolution of ecological and behavioural diversity: Australian Acacia thrips as model organisms. Australian Biological Resources Study, Canberra.
https://www.environment.gov.au/science/abrs/publications/thrips
Emlen ST (1982) The evolution of helping I: an ecological constraints model. American Naturalist 119: 29-39.
Emlen
ST (1984) Cooperative breeding in birds and mammals. Pp 305-339 in
Behavioral
ecology an evolutionary approach,
2nd
ed. (JR Krebs, NB Davies, eds.). Sinauer, Sunderland, MA.
Emlen ST, Oring L (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197: 215-223.
Emlen ST, Oring L (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197: 215-223.
Foster
KR, Ratnieks FLW (2005) A new eusocial vertebrate? Trends
in Ecology and Evolution
20(7): 363-364.
Frank SA (1995) Mutual policing and repression of competition in the evolution of cooperative groups. Nature 377: 520-522.
----(2003) Repression of competition and the evolution of competition. Evolution 57(4): 693-705.
Frank SA (1995) Mutual policing and repression of competition in the evolution of cooperative groups. Nature 377: 520-522.
----(2003) Repression of competition and the evolution of competition. Evolution 57(4): 693-705.
Hamilton
WD (1964) The genetical evolution of social behavior. Journal
of Theoretical Biology
7: 1-52.
Holldobler B, Wilson EO (1990) The ants. Belknap (HUP). Cambridge.
Holldobler B, Wilson EO (1990) The ants. Belknap (HUP). Cambridge.
Hrdy
SB (2011) Mothers
and others.
Belknap-Harvard.
Jones
CB (2011). Are humans cooperative breeders? A call for research.
Archives
of Sexual Behavior
40(3): 479-481.
----(2014) The evolution of mammalian sociality in an ecological perspective. Springer, NY.
----(2014) The evolution of mammalian sociality in an ecological perspective. Springer, NY.
Lotka
AJ (1928) Sterility in American marriages. PNAS
14(1): 99-108.
Marshall
JAR (2015) Social
evolution and inclusive fitness theory: an introduction.
Princeton University Press, Princeton, NJ.
Maynard
Smith J, Szathmáry
E (1995) The
major transitions of evolution.
W.H. Freeman Spektrum, New York.
Queller DC, Strassmann JE (1998) Kin selection and social insects. BioScience 48(3): 165-175.
Trivers RL (1985) Social evolution. Benjamin-Cummings Pub. Co., San Francisco.
Trivers RL (2015) Wild Life. Biosocial Research. New Brunswick, NJ. [& e-book, amazon.com]
http://vertebratesocialbehavior.blogspot.com/2019/04/review-of-robert-l-trivers-memoir-wild.html
Trivers RL (1985) Social evolution. Benjamin-Cummings Pub. Co., San Francisco.
Trivers RL (2015) Wild Life. Biosocial Research. New Brunswick, NJ. [& e-book, amazon.com]
http://vertebratesocialbehavior.blogspot.com/2019/04/review-of-robert-l-trivers-memoir-wild.html
----, Hare H (1976) Haplodiploidy and the evolution of the social insects. Science 191(4224): 249-263.
Wittenberger JF (1980) Group size and polygamy in social mammals. Am. Nat. 115: 197-222.
Yamamura N, Higashi M (1992) An evolutionary theory of conflict resolution between relatives: altruism, manipulation, compromise. Evolution 46: 1236-1239.
*First, no American social biologist can compete with Wilson's expertise as a student of a single social group, ants, in Wilson's case. Second, IMO, The Insect Societies (1971) is the greatest technical book ever written to date (and The Ants [Holldobler & Wilson, 1990] the greatest popular book ever written to date) in Animal Behavior and Ethology.
Third, unlike E.O. Wilson, Robert L. Trivers, also a renowned social biologist, winner of the Crafoord Prize in 2007, is not a synthesizer, though Trivers' most heralded papers have broad import. Trivers has not communicated much interest in a search for general patterns--within, between, and across taxa. Also, again, in contrast to E.O. Wilson, Trivers' canon pays scant attention to Genotype<----->Phenotype<----->Environment<-----> causes and effects. One seeks, for the most part, in vain, to locate Ecology--abiotic & biotic Environments (however conceptualized)--in Trivers' writings. Furthermore, to my knowledge,
Trivers has not emphasized the topics--group-formation, group maintenance, and the environmental conditions facilitating the emergence of sociality (which may or may not follow group-formation). Especially pertaining to the latter are the topics, competition and differential access to limiting resources, as well as, limiting resource dispersion (distribution and abundance in time and space). A litany of Behavioral Ecology is that, in some environmental regimes, kin may be ego's worst enemy. Such conditions may occur, for example, where there is intense local competition for limiting resources [above some critical threshold of decreasing reproductive gains].
***For example, cooperation and altruism might occur by way of "mutual policing," coercion, force, or persuasion, in addition to, "self-restraint" (see, especially, Steve Frank's work, in particular. 1995 and 2003).
West-Eberhard MJ (1975) The evolution of social behavior by kin selection. Quarterly Review of Biology 50: 1-33.
Wilson EO (1971) The insect societies. Belknap/Harvard, Cambridge, MA.
----(1975)
Sociobiology.
Belknap/Harvard, Cambridge, MA.Wilson EO (1971) The insect societies. Belknap/Harvard, Cambridge, MA.
Wittenberger JF (1980) Group size and polygamy in social mammals. Am. Nat. 115: 197-222.
Yamamura N, Higashi M (1992) An evolutionary theory of conflict resolution between relatives: altruism, manipulation, compromise. Evolution 46: 1236-1239.
*First, no American social biologist can compete with Wilson's expertise as a student of a single social group, ants, in Wilson's case. Second, IMO, The Insect Societies (1971) is the greatest technical book ever written to date (and The Ants [Holldobler & Wilson, 1990] the greatest popular book ever written to date) in Animal Behavior and Ethology.
Third, unlike E.O. Wilson, Robert L. Trivers, also a renowned social biologist, winner of the Crafoord Prize in 2007, is not a synthesizer, though Trivers' most heralded papers have broad import. Trivers has not communicated much interest in a search for general patterns--within, between, and across taxa. Also, again, in contrast to E.O. Wilson, Trivers' canon pays scant attention to Genotype<----->Phenotype<----->Environment<-----> causes and effects. One seeks, for the most part, in vain, to locate Ecology--abiotic & biotic Environments (however conceptualized)--in Trivers' writings. Furthermore, to my knowledge,
Trivers has not emphasized the topics--group-formation, group maintenance, and the environmental conditions facilitating the emergence of sociality (which may or may not follow group-formation). Especially pertaining to the latter are the topics, competition and differential access to limiting resources, as well as, limiting resource dispersion (distribution and abundance in time and space). A litany of Behavioral Ecology is that, in some environmental regimes, kin may be ego's worst enemy. Such conditions may occur, for example, where there is intense local competition for limiting resources [above some critical threshold of decreasing reproductive gains].
Trivers may be one of the last remaining extreme genetic thinkers among living social biologists (see my review of his memoir, Wild Life [2015] linked above). He typically asks a question, then, considers what consequences would obtain given alternate, pairwise combinations of related individuals [parents, full sibs: 1/2; first cousins: 1/8, etc.]. Trivers' canon is about mechanisms, not, about causes. His approach has yielded several fundamental papers; however, Trivers' work does not satisfactorily address variations in inter-individual interactions nor evolution in heterogeneous regimes nor phenotypic plasticity nor the principle that behavior is condition-dependent nor the litany of Behavioral Ecology that patterns of group-living will "map" onto dispersion [distribution and abundance in time & space and abiotic phenomena (e.g., climate)] of limiting resources nor the ideas that females are energy maximizers--males, time minimizers. Trivers does not seem to be sensitive to Hamilton's "b" & "c" whereby an actor & a recipient, whatever their "r" [coefficient of relationship], will respond relative to "b" [benefits to recipient] and "c" [costs to actor ("donor"--of reproductive units)], rather than, strictly, "r" [Hamilton's Rule: rb - c >0].
Trivers' literal logic based, apparently, on "r" alone, may reveal one unfortunate consequence of the term, "kin selection" that leads many to assume that it is always in ego's favor to exhibit social behavior towards kin. The latter assumption may be an assumption behind Trivers' (very successful and justifiably heralded) publications. Furthermore, as I [and several others before me (thanks to James Marshall and Andrew Bourke for making me aware of this literature)] have suggested, it may be useful to consider the role of competition influencing behavior between actor [donor] and recipient (see Yamamura & Higashi, 1992) and to question whether Hamilton's Rule adequately incorporates the consequences for actor and recipient and for the expression or non-expression of cooperation or altruism (i.e., "social behavior") of interindividual competition for limiting resources (e.g., food, mates, space, etc.).
Trivers' literal logic based, apparently, on "r" alone, may reveal one unfortunate consequence of the term, "kin selection" that leads many to assume that it is always in ego's favor to exhibit social behavior towards kin. The latter assumption may be an assumption behind Trivers' (very successful and justifiably heralded) publications. Furthermore, as I [and several others before me (thanks to James Marshall and Andrew Bourke for making me aware of this literature)] have suggested, it may be useful to consider the role of competition influencing behavior between actor [donor] and recipient (see Yamamura & Higashi, 1992) and to question whether Hamilton's Rule adequately incorporates the consequences for actor and recipient and for the expression or non-expression of cooperation or altruism (i.e., "social behavior") of interindividual competition for limiting resources (e.g., food, mates, space, etc.).
Thus, sometimes, kin may be ego's "worst enemy" [it may not be beneficial for ego to assist the reproduction of kin; it may be in the interest of ego to assist the reproduction--depending upon environmental regime] where predation is non-random by genotype [where cooperation or altruism toward a relative would increase ego's chances of becoming prey]. But, complicating the matter, in certain conditions, death, however, defined [e.g., self-induced, other-induced], can benefit kin. Clearly, systematic empirical and theoretical studies, in addition to modeling, are needed.
In the final analysis, however, the impressive success of Trivers' verbal models based on "r" may demonstrate the power of Hamilton's Rule to predict a very broad array of the social acts (cooperation, altruism) observed in Nature, including, Human Nature. However, we should not only ask, "What is "r"?, but, also (or rather?), "'r' relative to what?" According to Hamilton's Rule, the effects of "r" are expected to be constrained by the factors comprising "b" & "c". For example, when and under what conditions are kin, enemies?
**See comments on this paper in Holldobler & Wilson (1990, p 184)
**See comments on this paper in Holldobler & Wilson (1990, p 184)
****Addendum 4/26/2019: Regarding the ideas that humans are "cooperative brreeders" (e.g., Hrdy 2011) and that "cooperatively-breeding" mammals should be classified, "eusocial" (Jones 2014), I am going to go out on a limb to suggest that, based upon my reading to date on mammal, including, human, group-living patterns, mammalian "cooperative breeding" evolved from groups of communal females, and their offspring, that may or may not, then, evolve to share "economic" tasks, including care of young [see epigraph]...since females, ceteris paribus, are expected to be "energy-maximizers," thermal efficiency, broadly defined, will be paramount as a selective factor and in determining optimal "inclusive fitness maximizing" (see Jones 2014, Chapter 3). Anthropologists specializing in human "cooperative breeding" hold that the system evolved via monogamy, as it is thought to have done in insects and birds. However, mammalian sociosexual systems generally exhibit "sexual segregation" ("solitary" dispersion between the sexes) and, in mammals, monogamy is derived. Related, Mammal sociosexual systems and group structure are thought to result from the tendency of females to select rich patches of [limiting] food and that of males to select the largest possible number, sometimes, an aggregation, of females (Wittenberger 1980, Emlen & Oring 1977).
In summary, it seems to me that the more likely "route" to eusociaity in humans would have been via communally nesting mammalian ancestors, particularly, since monogamy is "derived," mammals are very likely to exhibit a "sexually-segregated" ["solitary"] socio-sexual organization, monogamy is relatively rare, and, in humans, at least, monogamy is often imposed by some authority. Routes to eusociality that might be applied to humans have, also, been proposed by West-Eberhard (1975) and by Queller & Strassmann (1998: "fortress defenders" and "life insurers") [see Queller & Strassmann (1998) for a brief summary of these ideas on pp 169-170]. These issues need to be unpacked.
Clara
B. Jones is a retired behavioral ecologist living in Silver Spring,
MD (USA).