Showing posts with label Eusocial. Show all posts
Showing posts with label Eusocial. Show all posts

Friday, January 10, 2020

Alouatta [howler monkeys] spp: unstable "temporal division-of-labor" [Clara B. Jones, 1996]

Jones CB (June, 1996) Temporal Division-of-Labor In A Primate: Age-Dependent Foraging Behavior. Neotropical Primates 4(2): 50-53. [with minor edits from the original]

Introduction
Division of labor based on age or size ["polyethism"] may reflect the reproductive condition of individuals in social groups. In 1967, West proposed the general hypothesis that hierarchical relations may be advantageous to both dominants and subordinates and that individuals of low rank may be inferior reproductives who benefit genetically from associations with and contributions to reproductively superior individuals. Since increasing age or size eventually entails decreasing reproductive value (Vx), several authors have noted that the display of social behavior, such as foraging behavior that benefits all members of a group, especially kin, should increase with age as the benefits from individual (selfish) reproduction decline (e.g., West-Eberhard 1975; Hrdy & Hrdy 1996). As individual reproductive value decreases, benefits (genetic or other) from assisting the reproduction of conspecifics (social behavior [cooperation, altruism as per W.D. Hamilton 1964]) may increase because costs (genetic or other [including, delayed costs or benefits] of social behavior) decrease with decreased benefits from individual reproduction. In order to test this hypothesis, I studied the relationship between adult female age, dominance rank, reproductive value, and social foraging behavior (food search and pursuit) for adult female mantled howler monkeys (Alouatta palliata Gray). [Author's note, 1/20/2020: "Temporal division-of-labor" (TDL) may, also, be termed, "age-polyethism" or "primitive" (totipotent) eusociality or Totipotent Eusociality (TE); see blogpost on General Mammalian Patterns, #28]

Subjects and Methods
During an extended period of study at Hacienda La Pacifica, Canas, Guanacaste, Costa Rica, I studied two marked, aged groups of mantled howler monkeys in two tropical dry forest habitats [Riparian, Group 5, and Deciduous, Group 12: see Jones 1980, Table 1]. For this species [and others of the genus], age and dominance rank are negatively correlated [Jones 1978, Jones 1980].

Social foraging was operationally defined as the behavioral series: feed-rest-move [at least 100 m]-feed, by a unit of more than three adults. These criteria were adopted in order to standardize measurement and to eliminate periods of food search within unusually large patches and by consort pairs. I identified which females in the primary study groups initiated foraging sequences and analyzed these observations by age.

My null hypothesis held that the frequency of foraging by females of any age class would be proportional to the total number of females who foraged in an age class. Two of the 15 [adult] females in one group [both young adults--Riparian Habitat Group 5] were never observed to direct foraging sequences and are excluded from analysis. Three [adult] females were aged on the basis of physical and behavioral traits other than tooth wear, and assignment to age classes for these females was made independent of the present analysis. Two of these females were observed from sub-adult through adult growth and classified as young adults; a third [adult] female, classified as middle-aged, was the mother of a sub-adult and a juvenile offspring, a highly unlikely combination for any other age class [see Glander 1980]. In my analysis of the second group [eight adult females--Deciduous Habitat Group 12], two young adult immigrant females were never observed to forage socially and were excluded from analysis. The pattern of results reported here would remain unaffected by alternative treatments of the raw data.

A monthly foraging rate for each forager was computed by dividing the frequency of foraging by the female's number of months resident in a group, a period of time varying from 10-14 months since some females emigrated during the study. These rates were compared with a female's age class, on the one hand, and dominance rank, on the other, to assess the relationship between the display of social foraging behavior and rank, and reproductive value [Vx, for her age class, (computed from) population data in Malmgren 1979, Table 23; equation after Wilson & Bossert 1971; c.f. Jones 1997] where relative contribution to future generations of an individual of a given age is quantified.

Results and Discussion
Table 1 [below--scroll down] presents the results of my analysis for the first group [Group 5] of foraging frequency as a function of female age, including, expected frequencies, and Chi Square. Computing "goodness of fit" led to an unequivocal rejection of the null hypothesis [P <- 0.001, X2= 107.64, df= 3]. Thus, old age and foraging frequency are significantly related. Young adult females initiate foraging significantly less than expected on the basis of their numbers [in Group 5: P <- 0.001], suggesting that such individuals are relatively "selfish" or are conserving time [T] and energy [E], possibly for reproduction and/or competition. Table 1 also shows that the middle-aged to old female foraged more than expected by chance [P <- 0.01], and this female succeeded the oldest and lowest-ranking female as the most frequent [social] forager when the old female emigrated in 1977 [personal observation*].

Additional observations support the reliability of the above patterns. The oldest female in the second group [Group 12] foraged more frequently than any other adult female [P <- 0.001, X2= 17.29, df= 2; c.f. Jones 1998]. Similarly, the relationship between foraging rate and age class [Fig. 1] yields a significant positive correlation [rs= +0.629, P <- 0.05]. Related to this, the correlation between foraging rate and dominance rank [Fig. 2] is significant but negative [i.e., the higher the foraging rate, the lower the dominance rank, rs= -0.63, P <- 0.05]. Thus, the initiation of [social] foraging is significantly associated with female age and dominance rank.

It was hypothesized above that the expression of social behavior would increase with increasing age since reproductive value [Vx, Fig. 3] decreases with age and with it the benefits from selfish reproduction [i.e., adult females have less to lose and more to gain in fitness as they age]. Figure 3 shows the reproductive value curve for the population of mantled howler monkeys at Hacienda La Pacifica [after Jones 1997]. Comparing Fig. 3 with Figs. 1 and 2, consistent with expectation, a strong negative association appears to exist between reproductive value and rate of foraging. Reproductive value in the four adult age classes is negatively, and significantly correlated with social foraging rate/month [rs= -0.95, P <- 0.02]. These results support the view that increasing age or size eventually entails decreasing reproductive value and that the display of social behavior should increase with age as the benefits from individual [selfish] reproduction decline.

What features of the howlers' environment might favor temporal division-of-labor? On 52 occasions, I was able to record the specific resource upon which foraging sequences terminated. Forty-four [85%] of these sequences terminated on ephemeral food [i.e., fruit, flowers, or new leaves: see Jones 1996], while eight [15%] sequences terminated with feeding on mature leaves [P <- 0.001, X2= 49, df= 1]. Thus, the initiation of social foraging sequences appears to be associated with food, the local distribution of which is temporally uncertain; new leaves, flowers, and fruit. The old female initiated 21 of the 52 [foraging] bouts, 20 of these for ephemeral food [c.f. Jones 1998].

An old female's presumed experience with the mosaic of her home range might enhance her efficiency as a forager so that her foraging activity may yield an energetic and nutritional gain to other group members. Temporal uncertainty of preferred food resources [see Jones 1996] may favor individuals that are the beneficiaries of the foraging activity of others, particularly, kin, when reproductive value is low. Division-of-labor through differential social roles may be a function of relative reproductive value, and behavioral roles may be understood within the context of life history patterns. [------>across Social Mammals** & other Social Vertebrates**? across Social Animals**?].

Acknowledgments
I appreciate the comments of R.C. Lewontin, E.O. Wilson, M.J. West-Eberhard, I.S. Bernstein, W.C. Dilger, and K.E. Weber on an earlier draft of this note. I thank the W. Hagnauer family for permission to work on their property, Hacienda La Pacifica, and for logistic assistance. My gratitude to Norman J. Scott, Jr. [USFWS], for expert introductions to the conduct of fieldwork and for imparting a variety of skills, is immeasurable. The work was supported by grants from the National Fellowships Fund and the National Research Council.

Clara B. Jones, Institute of Animal Behavior, Rutgers University-Newark, 101 Warren Street, Newark, New Jersey 07102, U.S.A.

References
Glander KE [1980] Reproduction and population growth in free-ranging mantled howling monkeys. Am J Phys Anthropol 53: 25-36.
Hamilton WD [1964] The genetical theory of social behavior. J Theor Biol 7: 1-52.
Hrdy SB, Hrdy DB [1976] Hierarchical relations mong female hanuman langurs (Primates: Colobinae, Presbytis entellus]. Science 197: 913-915.
Jones CB [1978] Aspects of reproduction in the mantled howler monkey, Alouatta palliata Gray. Ph.D. Dissertation, Cornell University, Ithaca, NY.
Jones CB [1980] The functions of status in the mantled howler monkey, Alouatta palliata Gray: intraspecific competition for group membershi in a folivorous Neotropical primate. Primates 21: 389-405.
Jones CB [December, 1996] Predictability of plant food resources for mantled howler monkeys at Hacienda La Pacifica, Costa Rica: Glander's dissertation revisited. Neotropical Primates 4(4): 147-149.
Jones CB [1997] Life history patterns of howler monkeys in a time-varying environment. Bol. Primatol. Lat. 6(1): 1-8.
Jones CB [March-Dec, 1998] A broad-band contact call by female mantled howler monkeys: implications for heterogeneous conditions. Neotropical Primates 6(2): 38-40.
Malmgren LA [1979] Empirical population genetics of golden mantled howling monkeys (Alouatta palliata) in relation to population structure, social dynamics, and evolution. Ph.D. Dissertation, University of Connecticut, Storrs.
West MJ [1967] Foundress associations in polistine wasps: dominance hierarchies and the evolution of social behavior. Science 157: 1584-1585.
West-Eberhard MJ [1975] The evolution of social behavior by kin selection. Quart Rev Biol 50: 1-33.
Wilson EO, Bossert WH [1971] A primer of population biology. Sinauer Assoc., Stanford, CN.

*  The last time I saw Group 5's D4 female, she was seated alone and immobile on a tree limb; her face impaled with quills of the prehensile-tailed porcupine [or, coendou: Coendou]. I never encountered this female again.
**EO Wilson's 2019 book, Genesis, advances the idea that many Mammals, including, humans, may be "eusocial." Where "temporal division-of-labor" is demonstrated, taxa can be classified, "primitively eusocial;" this classification would apply, also, to any other Vertebrates or, indeed, to any other Animals, where "age polyethism" is identified. If "tradeoffs" [e.g., energetic, reproductive, survivval] are most likely to be observed in "poor" conditions [e.g., heterogeneous regimes where "fitness" is compromised; recurrent drought, unpredictable food or water supply], "age polyethism" may evolve to minimize energetic costs in time and space. While females are expected to be most sensitive to energetic effects, males, also, may benefit, under some conditions, from age-dependent responses. Furthermore, there  may be energetic [reproductive] benefits in coordinating many maturational [age-dependent] and developmental [age-dependent] milestones or markers with one another as genetic and physiological energy-savings tactics and strategies.
-----------------------------------------------------------------------------------------------
Table 1. Age class, estimated age in years, number of females in each age class (N), observed (O), and expected (E) frequencies of social foraging, and chi square (X2) for a test of the null hypothesis. In “Age Class” column, YA= Young Adult; M-a= Middle-aged Adult; M-a-O= Middle-age to Old Adult; O= Old Adult.
Age Class N O E (O-E)2/E (X2)
YA (5-7) 5 15 42.4 17.71
M-a (7-10) 5 35 42.4 1.29
M-a-O (10-15) 1 18 8.1 12.11
O (15+) 1 33 8.1 76.54
Total 12 101 101 107.65




Wednesday, April 10, 2019

Review of E.O. Wilson's new book, Genesis (Clara B. Jones, 2019)


Genesis: the deep origin of societies.
Edward O. Wilson
2019
Liveright Pub. Co. (W.W. Norton & Co.)
153 pp
$15.88

Reviewed by Clara B. Jones, Ph.D. (2019)

"The key to the sociobiology of mammals is milk." EO Wilson (1975)

Social evolution is an important topic of investigation by behavioral ecologists and evolutionary biologists. The two categories of sociality, cooperation and altruism (Hamilton 1964), have arisen infrequently across vertebrate taxa because, in propitious environmental regimes, group-level coordination and control is usually derailed by “cheaters” who fail to comply with group norms. As Wilson pointed out in 1971, groups of cooperators and altruists characterize the most “successful” (i.e., widely distributed) extant terrestrial taxa—social insects and humans. In his new book, Genesis [sic], the entomologist, E.O. Wilson, winner of the Crafoord Prize in 1990 and America's premier social biologist*, assesses the emergence of eusociality, the highest social “grade” (Wilson 1971). 

Perhaps the primary contribution of this brief book is that Wilson classifies humans as eusocial, a system characterized by overlap of generations, cooperative brood-care, and non-reproductive "helpers." If Wilson is correct, humans would be classified, "primitively" eusocial (Wilson, 1971) or Totipotent Eusocial [TE; see "General Mammalian Patterns" blogpost, this blog, #28, 9/19/19], since most human "helpers" (except post-menopausal females or other sterile persons) are expected to be "totipotent"—"helpers" capable of independent reproduction, able to reverse their non-reproductive status [TE]. Members of permanently sterile “castes,” are labeled, “advanced” eusocial (Wilson, 1971), and Wilson's treatments in this book suggest to me that he might be inclined to label permanently non-reproductive human groups as “caste”-like, associations that should be investigated, as well, for the possible presence of "temporal division-of-labor" ("age polyethism": see Wilson, 1971)..

The first five chapters of Genesis include limited explications of some topics (e.g., “multi-level” selection, “phenotypic plasticity”). Wilson clearly explains that the conceptual frameworks of Genesis are Maynard Smith & Szathmáry's (1995) classic treatment of “major transitions of evolution,” as well as, “multi-level” and “group selection,” terms used interchangeably. In Chapter 6, Wilson appears to be primarily interested in proffering a defense for Charles Darwin's explanation for the evolution of sterile castes—an argument based on group selection which Wilson defines as follows: "...within groups, selfish individuals win against altruists, but groups of altruists beat groups of selfish individuals" [attributed to David Sloan Wilson]. Among impediments to "proofs" of "group selection," defenders need to show how "cheaters" are controlled within groups, demonstrations that will require empirical studies.

Here and throughout the book, Wilson fails to incorporate the ecological literature showing, for example, that intragroup competition is generally stronger than intergroup competition or that behavioral ecologists have, since the early 1980s, advanced general criteria for the evolution of cooperative groups (e.g., Emlen 1982) and of eusociality (e.g., Crespi 1994; also see, Choe & Crespi 1997, Crespi et al. 2004 [see, especially, p 66 & pp 73-74], Bourke & Franks 1995, Bourke 2011); West-Eberhard 1975 on p 169, col. 3, par. 2 in Queller & Strassmann 1998 pp 169-170). More specifically, Wilson fails to cite other researchers who have advanced the idea that humans are eusocial (e.g., Foster & Ratnieks 2005, Jones 2011, Crespi 2014).

Nonetheless, combined with related studies (e.g., Emlen 1982, Emlen 1984, Hrdy 2011), there seems to be an expanding literature justifying systematic and quantitative investigation of eusociality in humans, in particular, and in vertebrates, broadly, including, standardization of terminology, experiments, and modeling (e.g., “agent-based” modeling). For an early, published paper that might generate ideas for these future projects, Lotka (1928) is suggested.

The final chapter (7), titled, “The human story,” reviews “transitions” to eusociality across apes, from chimpanzees (Pan troglodytes), as well as, bonobos (P. paniscus) continuing to Australopithecus and the Homo line. Unlike other chapters, this one emphasizes the importance of ecological factors (habitat) for the evolution of social mechanisms among hominids and their ancestors, and Wilson endorses the “social brain hypothesis” as well as the importance of fire for the “rapid evolution” of large brains and the facilitation of group-life, respectively—as well as, their consequent adaptations. Interestingly, in this chapter (p 114), the author compares human eusociality to other social mammals, in particular, African wild dogs, demonstrating that he is prepared to classify “other mammal species,” eusocial, in addition to the social mole rats (see Jones 2014, pp 48-52)****. For another interesting example, see Dwarf Mongoose.

Wilson does not dismiss “kin selection;” but, he holds that “multi-level” or “group” selection is the primary driver of the route to eusociality, behind which kin effects may follow [he may be right; see this lecture, "Ecology Of Societies," by Simon Levin of Princeton:

 https://www.youtube.com/watch?v=rQUsApf3RHs ].

Most social biologists are certain to be surprised to read Wilson's claims that "Hamilton's Rule" suffers "fatal weaknesses" and is no longer "useful (see Bourke 2011, Bourke & Franks 1995)." Wilson does not support these flippant statements with mainstream literature about which there is wide consensus in favor of Hamilton's Rule, and nowhere in his text does he assess assumptions underlying considerations of differential benefits to recipients of social behavior (cooperation or altruism) or differential costs to "donors," terms subsumed in Hamilton's Rule (see, for example, Bourke 2011, Marshall 2015). Related to this, Wilson all but completely avoids optimality [cost-benefit] thinking, and social biologists will, I think, find his explication of group selection obfuscating when applied to genetics, including the assertion that population geneticists have shown the verity of group selection.

Nonetheless, researchers, including, evolutionary psychologists, human biologists, and anthropologists, will derive many testable hypotheses from Wilson's claims, among the more provocative of them, the statement that division of labor by human professional categories is evidence of eusociality and group selection (that they are "caste-like)." I am led to wonder if some human guilds might be characterized by high r (coefficient of relationship), a possibility that would be easy to test. Likewise, guilds, and other formal human groups (e.g., fraternities and sororities, political groups, and the like), should be investigated for evidence of "temporal division-of-labor" ('age polyethism": see Wilson, 1971).

In service to economy, organization, and clarity, Genesis might have been more wisely presented as a "tight" technical paper rather than a manifesto in book form, though Wilson deserves to be applauded for advancing bold ideas, for insisting that human social behavior be subjected to the same analyses that we apply to non-human animals, and that, ultimately, evolutionary explanations will need to be "gene-centered," a long-standing hallmark of Wilson's approach (e.g., Wilson 1975) and that of the heralded evolutionary biologist, Robert Trivers (see, e.g., Trivers 1985 and the remarkable Trivers & Hare, 1976**; also see citations by Bernie Crespi). I recommend this creative and controversial text to specialists, students, and the general audience. It will raise many questions, stimulate thought, and, hopefully, generate conversations*** and research** about variations in human socio-sexual units, as well as, the origins and evolution, the causes and consequences, of group life across all vertebrates.

References
Bourke AFG (2011) Principles of social evolution. Oxford University Press, Oxford.
----, Franks NR (1995) Social evolution in ants. Princeton [NJ] University Press.
Choe JC, Crespi BJ (1997) The evolution of social behavior in insects and arachnids. Cambridge University Press, London.
Crespi BJ (1994) Three conditions for the evolution of eusociality: are they sufficient? Insectes Sociaux 41(4): 395-400.
Crespi BJ (2014) The insectan apes. Human Nature 25(1): 6-27.
Crespi BJ, Morris DC, Mound LA (2004) Evolution of ecological and behavioural diversity: Australian Acacia thrips as model organisms. Australian Biological Resources Study, Canberra.

https://www.environment.gov.au/science/abrs/publications/thrips

Emlen ST (1982) The evolution of helping I: an ecological constraints model. American Naturalist 119: 29-39.
Emlen ST (1984) Cooperative breeding in birds and mammals. Pp 305-339 in Behavioral ecology an evolutionary approach, 2nd ed. (JR Krebs, NB Davies, eds.). Sinauer, Sunderland, MA.
Emlen ST, Oring L (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197: 215-223.
Foster KR, Ratnieks FLW (2005) A new eusocial vertebrate? Trends in Ecology and Evolution 20(7): 363-364.
Frank SA (1995) Mutual policing and repression of competition in the evolution of cooperative groups. Nature 377: 520-522.
----(2003) Repression of competition and the evolution of competition. Evolution 57(4): 693-705.
Hamilton WD (1964) The genetical evolution of social behavior. Journal of Theoretical Biology 7: 1-52.
Holldobler B, Wilson EO (1990) The ants. Belknap (HUP). Cambridge.
Hrdy SB (2011) Mothers and others. Belknap-Harvard.
Jones CB (2011). Are humans cooperative breeders? A call for research. Archives of Sexual Behavior 40(3): 479-481.
----(2014) The evolution of mammalian sociality in an ecological perspective. Springer, NY.
Lotka AJ (1928) Sterility in American marriages. PNAS 14(1): 99-108.
Marshall JAR (2015) Social evolution and inclusive fitness theory: an introduction. Princeton University Press, Princeton, NJ.
Maynard Smith J, Szathmáry E (1995) The major transitions of evolution. W.H. Freeman Spektrum, New York.
Queller DC, Strassmann JE (1998) Kin selection and social insects. BioScience 48(3): 165-175.
Trivers RL (1985) Social evolution. Benjamin-Cummings Pub. Co., San Francisco.
Trivers RL (2015) Wild Life. Biosocial Research. New Brunswick, NJ. [& e-book, amazon.com] 

http://vertebratesocialbehavior.blogspot.com/2019/04/review-of-robert-l-trivers-memoir-wild.html

----, Hare H (1976) Haplodiploidy and the evolution of the social insects. Science 191(4224): 249-263.
West-Eberhard MJ (1975) The evolution of social behavior by kin selection. Quarterly Review of Biology 50: 1-33.
Wilson EO (1971) The insect societies. Belknap/Harvard, Cambridge, MA.
----(1975) Sociobiology. Belknap/Harvard, Cambridge, MA.
Wittenberger JF (1980) Group size and polygamy in social mammals. Am. Nat. 115: 197-222.
Yamamura N, Higashi M (1992) An evolutionary theory of conflict resolution between relatives: altruism, manipulation, compromise. Evolution 46: 1236-1239.

*First, no American social biologist can compete with Wilson's expertise as a student of a single social group, ants, in Wilson's case. Second, IMO, The Insect Societies (1971) is the greatest technical book ever written to date (and The Ants [Holldobler & Wilson, 1990] the greatest popular book ever written to date) in Animal Behavior and Ethology.

Third, unlike E.O. Wilson, Robert L. Trivers, also a renowned social biologist, winner of the Crafoord Prize in 2007, is not a synthesizer, though Trivers' most heralded papers have broad import. Trivers has not communicated much interest in a search for general patterns--within, between, and across taxa. Also, again, in contrast to E.O. Wilson, Trivers' canon pays scant attention to Genotype<----->Phenotype<----->Environment<-----> causes and effects. One seeks, for the most part, in vain, to locate Ecology--abiotic & biotic Environments (however conceptualized)--in Trivers' writings. Furthermore, to my knowledge,

Trivers has not emphasized the topics--group-formation, group maintenance, and the environmental conditions facilitating the emergence of sociality (which may or may not follow group-formation). Especially pertaining to the latter are the topics, competition and differential access to limiting resources, as well as, limiting resource dispersion (distribution and abundance in time and space). A litany of Behavioral Ecology is that, in some environmental regimes, kin may be ego's worst enemy. Such conditions may occur, for example, where there is intense local competition for limiting resources [above some critical threshold of decreasing reproductive gains].

Trivers may be one of the last remaining extreme genetic thinkers among living social biologists (see my review of his memoir, Wild Life [2015] linked above). He typically asks a question, then, considers what consequences would obtain given alternate, pairwise combinations of related individuals [parents, full sibs: 1/2; first cousins: 1/8, etc.]. Trivers' canon is about mechanisms, not, about causes. His approach has yielded several fundamental papers; however, Trivers' work does not satisfactorily address variations in inter-individual interactions nor evolution in heterogeneous regimes nor phenotypic plasticity nor the principle that behavior is condition-dependent nor the litany of Behavioral Ecology that patterns of  group-living will "map" onto dispersion [distribution and abundance in time & space and abiotic phenomena (e.g., climate)] of limiting resources nor the ideas that females are energy maximizers--males, time minimizers. Trivers does not seem to be sensitive to Hamilton's "b" & "c" whereby an actor & a recipient, whatever their "r" [coefficient of relationship], will respond relative to "b" [benefits to recipient] and "c" [costs to actor ("donor"--of reproductive units)], rather than, strictly, "r" [Hamilton's Rule: rb - c >0].

Trivers' literal logic based, apparently, on "r" alone, may reveal one unfortunate consequence of the term, "kin selection" that leads many to assume that it is always in ego's favor to exhibit social behavior towards kin. The latter assumption may be an assumption behind Trivers' (very successful and justifiably heralded) publications. Furthermore, as I [and several others before me (thanks to James Marshall and Andrew Bourke for making me aware of this literature)] have suggested, it may be useful to consider the role of competition influencing behavior between actor [donor] and recipient (see Yamamura & Higashi, 1992)  and to question whether Hamilton's Rule adequately incorporates the consequences for actor and recipient and for the expression or non-expression of cooperation or altruism (i.e., "social behavior") of interindividual competition for limiting resources (e.g., food, mates, space, etc.).

Thus, sometimes, kin may be ego's "worst enemy" [it may not be beneficial for ego to assist the reproduction of kin; it may be in the interest of ego to assist the reproduction--depending upon environmental regime] where predation is non-random by genotype [where cooperation or altruism toward a relative would increase ego's chances of becoming prey]. But, complicating the matter, in certain conditions, death, however, defined [e.g., self-induced, other-induced], can benefit kin. Clearly, systematic empirical and theoretical studies, in addition to modeling, are needed.

In the final analysis, however, the impressive success of Trivers' verbal models based on "r" may demonstrate the power of Hamilton's Rule to predict a very broad array of the social acts (cooperation, altruism) observed in Nature, including, Human Nature. However, we should not only ask, "What is "r"?, but, also (or rather?), "'r' relative to what?" According to Hamilton's Rule, the effects of "r" are expected to be constrained by the factors comprising "b" & "c". For example, when and under what conditions are kin, enemies?

**See comments on this paper in Holldobler & Wilson (1990, p 184)

***For example, cooperation and altruism might occur by way of "mutual policing," coercion, force, or persuasion, in addition to, "self-restraint" (see, especially, Steve Frank's work, in particular. 1995 and 2003).

****Addendum 4/26/2019: Regarding the ideas that humans are "cooperative brreeders" (e.g., Hrdy 2011) and that "cooperatively-breeding" mammals should be classified, "eusocial" (Jones 2014), I am going to go out on a limb to suggest that, based upon my reading to date on mammal, including, human, group-living patterns, mammalian "cooperative breeding" evolved from groups of communal females, and their offspring, that may or may not, then, evolve to share "economic" tasks, including care of young [see epigraph]...since females, ceteris paribus, are expected to be "energy-maximizers," thermal efficiency, broadly defined, will be paramount as a selective factor and in determining optimal "inclusive fitness maximizing" (see Jones 2014, Chapter 3). Anthropologists specializing in human "cooperative breeding" hold that the system evolved via monogamy, as it is thought to have done in insects and birds. However, mammalian sociosexual systems generally exhibit "sexual segregation" ("solitary" dispersion between the sexes) and, in mammals, monogamy is derived. Related, Mammal sociosexual systems and group structure are thought to result from the tendency of females to select rich patches of [limiting] food and that of males to select the largest possible number, sometimes, an aggregation, of females (Wittenberger 1980, Emlen & Oring 1977).

In summary, it seems to me that the more likely "route" to eusociaity in humans would have been via communally nesting mammalian ancestors, particularly, since monogamy is "derived," mammals are very likely to exhibit a "sexually-segregated" ["solitary"] socio-sexual organization, monogamy is relatively rare, and, in humans, at least, monogamy is often imposed by some authority. Routes to eusociality that might be applied to humans have, also, been proposed by West-Eberhard (1975) and by Queller & Strassmann (1998: "fortress defenders" and "life insurers") [see Queller & Strassmann (1998) for a brief summary of these ideas on pp 169-170]. These issues need to be unpacked.

Clara B. Jones is a retired behavioral ecologist living in Silver Spring, MD (USA).